Speckle Reduction Using Stochastic Distances
نویسندگان
چکیده
This paper presents a new approach for filter design based on stochastic distances and tests between distributions. A window is defined around each pixel, samples are compared and only those which pass a goodness-of-fit test are used to compute the filtered value. The technique is applied to intensity Synthetic Aperture Radar (SAR) data, using the Gamma model with varying number of looks allowing, thus, changes in heterogeneity. Modified Nagao-Matsuyama windows are used to define the samples. The proposal is compared with the Lee’s filter which is considered a standard, using a protocol based on simulation. Among the criteria used to quantify the quality of filters, we employ the equivalent number of looks (related to the signal-to-noise ratio), line contrast, and edge preservation. Moreover, we also assessed the filters by the Universal Image Quality Index and the Pearson’s correlation between edges.
منابع مشابه
Intensity SAR Image Denoising with Stochastic Distances Using Non-Local Means Filter
Image denoising approaches have attracted many researchers. The main tackled problem is the removal of additive Gaussian noise. However, it is very important to expand the filters capacity to other types of noise, for example the multiplicative noise of SAR images. The state of the art methods in this area work with patch similarity. This paper shows a new approach for speckle removal based on ...
متن کاملSAR Image Despeckling Algorithms using Stochastic Distances and Nonlocal Means
This paper presents two approaches for filter design based on stochastic distances for intensity speckle reduction. A window is defined around each pixel, overlapping samples are compared and only those which pass a goodness-of-fit test are used to compute the filtered value. The tests stem from stochastic divergences within the Information Theory framework. The technique is applied to intensit...
متن کاملSAR Image Despeckling Algorithms using Stochastic Distances and Nonlocal Means
This paper presents two approaches for filter design based on stochastic distances for intensity speckle reduction. A window is defined around each pixel, overlapping samples are compared and only those which pass a goodness-of-fit test are used to compute the filtered value. The tests stem from stochastic divergences within the Information Theory framework. The technique is applied to intensit...
متن کاملSpeckle Reduction in Synthetic Aperture Radar Images in Wavelet Domain Using Laplace Distribution
Speckle is a granular noise-like phenomenon which appears in Synthetic Aperture Radar (SAR) images due to coherent properties of SAR systems. The presence of speckle complicates both human and automatic analysis of SAR images. As a result, speckle reduction is an important preprocessing step for many SAR remote sensing applications. Speckle reduction can be made through multi-looking during the...
متن کاملClassification of Complex Wishart Matrices with a Diffusion-Reaction System guided by Stochastic Distances
We propose a new method for polarimetric synthetic aperture radar (PolSAR) imagery classification based on stochastic distances in the space of random matrices obeying complex Wishart distributions. Given a collection of prototypes [Formula: see text] and a stochastic distance d(.,.), we classify any random matrix X using two criteria in an iterative set-up. First, we associate X with the class...
متن کاملSpeckle Noise Reduction for the Enhancement of Retinal Layers in Optical Coherence Tomography Images
Introduction One of the most important pre-processing steps in optical coherence tomography (OCT) is reducing speckle noise, resulting from multiple scattering of tissues, which degrades the quality of OCT images. Materials and Methods The present study focused on speckle noise reduction and edge detection techniques. Statistical filters with different masks and noise variances were applied on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012